Temperature switch for high temperature ranges Stainless steel version, IP 65 Model TWG

WIKA data sheet TV 31.60

Applications

- Temperature monitoring and direct switching of electrical loads
- Control and regulation of industrial processes
- Universally suitable for machine building, plant, vessel, apparatus construction and food industry, chemical industry, petrochemical industry
- Ignition protection type GAS Ex-ia IIC T6 and T4 Dust Ex-iaD A20 IP 65 T85 and T135

Special features

- Electropolished case
- Ingress protection IP 65, NEMA 4
- Ambient temperature $-40 \ldots+85^{\circ} \mathrm{C}$
- 1 or 2 independent switch points, high contact rating up to 15 A / AC 220 V
- Directly connected or via capillary (up to 10 m capillary)

Description

These high-quality and robust temperature switches have been developed specifically for safety-critical applications. High quality and product manufacturing ensures reliable monitoring of your plant. The manufacturer Cella is certified to ISO 9001. In production, the switches are traced by quality assurance software at every step and subsequently are 100% tested.

All wetted parts materials are from stainless steel. Each switch family is available in IP 65, Ex-ia or Ex-d versions.

Fig. left: Temperature switch, model TWG-B
Fig. right: Temperature switch with capillary,
Fig. left: Temperature switch, model TWG-B
Fig. right: Temperature switch with capillary, model TWG-C

In order to ensure as flexible operation as possible, the temperature switches are equipped with micro switches, which make it possible to switch an electrical load of up to $15 \mathrm{~A} / \mathrm{AC} 220 \mathrm{~V}$ directly. For smaller contact ratings, such as for PLC applications, Argon gas-filled micro switches with gold-plated contacts can be selected as an option.

With its flexible AISI 316 spiral protection hose, the model TWG temperature switch is extremely robust and guarantees optimal operating characteristics for applications requiring particularly high corrosion protection.

Standard version

Case

Stainless steel, electropolished case cover with bayonet ring closure, secured against unauthorised opening by an anti-rotation mechanism

Ingress protection
IP 65 per EN 60529 / IEC 529
Permissible ambient temperature
$-40 \ldots+85^{\circ} \mathrm{C}$

Connection to thermowell

Stainless steel, connection thread $1 / 2$ NPT

Stem

AISI 316
Diameter: 12 mm
Length: $\quad 85 \mathrm{~mm}$

Measuring system

Gas actuated temperature system (SAMA class III B)
Type of mounting

Type of mounting	Code
Direct assembly ${ }^{1)}$	B
Capillary	C

1) max. setting range $400^{\circ} \mathrm{C}$ with a permanent working temperature of max. $250^{\circ} \mathrm{C}$

Capillary length

Length	Code
2 m	K2m
4 m	K4m ${ }^{\text {) }}$
6 m	$\mathrm{K} 6 \mathrm{~m}{ }^{2}$
8 m	K8m ${ }^{\text {2 }}$
10 m	$\mathrm{K} 10 \mathrm{~m}{ }^{2}$)

2) The maximum permissible height difference between sensor and housing is 2 m .

Immersion depth

The maximum immersion depth Y (see dimensional drawing) can be calculated as per the following equation:
Capillary length in metre $\times 145 \mathrm{~mm}$
Example:
Capillary length 2 m
=> $2 \times 145 \mathrm{~mm}=290 \mathrm{~mm}=$ max. immersion depth
The length K is reduced accordingly.

Switch contacts

1 or 2 SPDT (change-over) micro switches selectable, DPDT function through two SPDT micro switches with simultaneous

Switch	Code	triggering within 0.2% of full
$1 \times$ SPDT	U	temperature range, in the
$2 \times$ SPDT	D	following variants:

Code	Design	Electrical rating (resistive load) $)^{3}$	
		AC	DC

3) Only the underlined data are shown on the product label
4) Max. 1 switch contact

Repeatability

$\leq 0.5 \%$ of the full temperature range

Setting ranges, max. test temperature, max. switch hysteresis

Setting range	Max. test temperature	Max. switch hysteresis 1 contact	contacts	1 contact, adjustable hysteresis

5) Stem dimensions: $X=102, Y=163$

Switch points

After unscrewing the case cover, switch point adjustment can be made using the adjustment screw. The switch point is settable within the entire measuring range with the following general rule:
■ Define the value $\mathrm{A}=2 \mathrm{x}$ repeatability + switch hysteresis

- If the temperature is rising, the switch point should be set between (min. + value A) up to max. of the setting range
- If the temperature is falling, the switch point should be set between min. up to (max. - value A) of the setting range

Example:

Setting range: $0 \ldots 100^{\circ} \mathrm{C}$ with one switch contact
Repeatability: 0.5% of $100^{\circ} \mathrm{C}=0.5^{\circ} \mathrm{C}$
Switch hysteresis $=4.5^{\circ} \mathrm{C}$ (see table setting ranges)
Value $\mathrm{A}=2 \times 0.5^{\circ} \mathrm{C}+4.5^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$
If the temperature is rising, the switch point should be set between $5^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.
If the temperature is falling, the switch point should be set between $0^{\circ} \mathrm{C}$ and $95^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{C}=100^{\circ} \mathrm{C}-5^{\circ} \mathrm{C}\right)$.
For optimal performance we suggest the switch point lies between 25% and 75% of the setting range.

Electrical connection

$1 / 2$ NPT female, cable connection using internal terminal block, protective conductor connection using internal and external screw, max. earth cable cross-section $4 \mathrm{~mm}^{2}$

Temperature switch certified per:

Low voltage directive 73/23 EEC and 93/68 EEC

Dielectric strength

Safety class I (EN 61298-2: 1997-06)

Mounting

Direct or wall mounting
The preferred connection location of the temperature switch should be below. Alternatively the instrument can be installed so that internal access is from the front of the enclosure and the electrical connection is located on the side.

Options

■ Other connection to thermowell, also with adapter
■ Electrical connection $3 / 4$ NPT, G $1 / 2$ or M20 x 1.5 (female)

- Cable gland on request
- Switch point adjustment to customer specification
- 2" pipe-mounting kit (with clamping element)
- Stem diameter $9.5 \mathrm{~mm}(\mathrm{Y}=195 \mathrm{~mm}, \mathrm{X}=135 \mathrm{~mm})$
- Helical bulb (ambient temperature: $-30 \ldots+70^{\circ} \mathrm{C}$)
- Version for offshore ${ }^{6}$) or tropicalised application ${ }^{6}$)
- Version for applications to NACE 6)
- Version for ammonia applications ${ }^{6)}$
- Version to

GAS Ex-ia IIC T6 and T4 - Dust Ex-iaD A20 IP 65 T85 and T135 6)
Electrical characteristics: $U_{i}=30 \mathrm{~V}$
$\mathrm{l}_{\mathrm{i}}=100 \mathrm{~mA}$
$\mathrm{Pi}=0.75 \mathrm{~W}$
$\mathrm{C}_{\mathrm{i}}=0 \mu \mathrm{~F}$
$\mathrm{Li}=0 \mathrm{mH}$
Accessories:
Thermowells

Approvals and certificates

■ SIL-2 version 6) 7)

- GOST-R certificate
- Test certificate *CA* (confirmation of the switching accuracy)
- Test report *CP* (3-time listing of the switch point, requires switch point specification)
■ Material certificate 3.1 per EN 10204

Weight

approx. 2.1 kg (with 2 m capillary)

Dimensions in mm

Version with capillary

Direct assembly version

Ordering information

Model / Mounting / Switch contacts with version / Capillary length / Setting range / Connection to thermowell / Electrical connection / Switch point(s) / Switch direction(s) / Options

Example: TWG - B - U1 - K2m - 0/100 ${ }^{\circ} \mathrm{C}$ - 1/2" NPT-M - 1/2" NPT-F

The specifications given in this document represent the state of engineering at the time of publishing.
We reserve the right to make modifications to the specifications and materials.

WIKA

WIKA Alexander Wiegand SE \& Co. KG
Alexander-Wiegand-Straße 30
63911 Klingenberg/Germany
Tel. (+49) 9372/132-0
Fax (+49) 9372/132-406
E-mail info@wika.de
www.wika.de

